Power Grids in Japan

Visiting Professor, The University of Tokyo, Waseda University
Central Research Institute of Electric Power Industry
Deputy Associate Vice President Prof. Dr. Hiroshi Asano

Energy Bridges between Russia and Japan

November 2015
Power grids & electricity market in Japan

Source: Japan’s Electricity Market Deregulation (METI, 2015)
Electric power system in Japan

Loosely coupled power systems and operations—Nation-wide operation by Organization for Cross-regional Coordination of Transmission Operators (OCCTO) since 2015
Interconnection among general power utilities

Frequency converter stations
Shin-Shinano: 0.6GW
Sakuma: 0.3GW
Higashi-Shimizu: 0.3GW (previously 0.1GW)
Total 1.2GW → 2.1 GW (2020), 3 GW

60Hz System 110GW

Kyusyu

500kV

Shikoku

1.4GW

DC±250kV

Chugoku

500kV

16.6GW

5.6GW

Kansai

500kV

Hokuriku

500kV

500kV

Chubu

5.6GW

Tokyo

500kV

500kV

6GW

DC±250kV

Tohoku

0.6GW

Hokkaido

5.6GW

0.3GW

DC±250kV

50Hz System 90GW

Kansai

Tokyo

500kV

Chugoku

Shikoku

Kyusyu

Chubu
Policies of the electricity regulatory reform

◆ Enhancing nationwide system operation in 2015
 ➢ Establishing the Organization for Cross-regional Coordination of Transmission Operators (OCCTO)
 ➢ Framework for development of interconnection

◆ Full retail choice and full liberalization of power generation
 ➢ All customers, including household consumers, will be able to choose an electricity supplier in 2016

◆ Further securing neutrality of the transmission/distribution sector through the legal unbundling: 2020
 ➢ Transmission/distribution company will be separated.
Installed Capacity of 10 Japanese EPCos

<table>
<thead>
<tr>
<th>Year</th>
<th>Others</th>
<th>Nuclear</th>
<th>Oil</th>
<th>LNG</th>
<th>Coal</th>
<th>Pumped Storage</th>
<th>Hydro</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>0.2%</td>
<td>20.2%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2009</td>
<td>0.2%</td>
<td>20.2%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Generation mix: 10EPCos, in 100 M kWh
LNG is dominant after Fukushima
New Target of Power Generation Mix, Primary Energy and CO₂ emission in 2030

Power Generation Mix
Diversification to four energy kinds

Primary Energy
9.8% reduction from 2013 level

Energy-origin CO₂
24.9% reduction from 2013 level

<table>
<thead>
<tr>
<th>Energy Kind</th>
<th>2010</th>
<th>2013</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Coal</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>LNG</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Renewable</td>
<td>0.2</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Geothermal</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Hydro</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Nuclear</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(Source: Advisory Committee for Natural Resources and Energy)
Economic Dispatch: case of Chubu EPCo

- 石油 (Oil)
- LNG (Natural Gas)
- 石炭・他社 (Coal)
- 一般水力 (Hydropower)
- 扬水動力 (Pump Storage)
- 扬水発電 (Pumped Hydroelectricity)

Supply

Demand

Max Capacity

Reserve Capacity

Nuclear Power Stop

Supply Capacity

© CRIEPI
Concluding comments

- For generators: imports from Russia as competitive LNG sources
- For T&D: international interconnections and inter-utility connections will be handled at OCCTO
- For retailers: stable supply and competitive price
- For RES integration: more flexible gas-fired generator preferred