

A1-2016-000311 Rev. 1 PSNN-2016-0717

Report to the Sasakawa Peace Foundation

Debris Treatment by Pyroprocess Technology

Takashi Omori

August 22. 2016

Toshiba Corporation, Japan

© 2016 Toshiba Corporation

This study is being performed under the contract with The Sasakawa Peace Foundation.

Contents

- 1. Overview of the debris treatment study by pyroprocess (JFY2015 & 2016)
- 2. Public literature search on Fukushima debris status
- 3. Public literature search on debris treatment methods
- 4. Pyroprocess for debris treatment
- 5. Technical challenges
- 6. Discussions

1. Overview of the debris treatment study by pyroprocess

Objectives

- Evaluate technical possibility of treatment of the Fukushima Daiichi fuel debris by pyroprocess technology
- Provide the preliminary R&D plan and the rough estimation of the cost/schedule for the demonstration facility
- ✓ Identify technical challenges (R&D needs)
- > Workscope
 - ✓ Public literature search on Fukushima debris characteristics/amounts
 - ✓ Public literature search on debris treatment methods
 - ✓ Evaluate promising pyroprocess methods for the debris treatment
 - Rough evaluation of the demonstration facility design and its cost/schedule
 - ✓ Identify technical challenges
 - Consideration on preferred metrics for nuclear waste transmutation from a viewpoint of public perception

1. Overview of the debris treatment study by pyroprocess

Schedule

Items	Jan, 2016	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
1. Public literature search on Fukushima debris status									
2. Public literature search on debris treatment methods									
3. Evaluate promising pyroprocess methods for the debris treatment									
 Rough evaluation of the demonstration facility design and its cost/schedule 									
5. Identify technical challenges									
 Consideration on preferred metrics for nuclear waste transmutation 									

2. Public literature search on Fukushima debris status

Ref. 1: IRID Annual Research Report 2014 (in Japanese)

Ref. 2: M. Naito et. al., "Accident progress analysis by SAMPSON code", Shizuoka Univ., 2015 Fall Meeting of the Atomic Energy Society of Japan, September 11, 2015 (in Japanese)

2. Public literature search on Fukushima debris status

Assumed debris compositions for pyro-process treatment

Reg	ion		Core	e regior	1	Lo ple re	ower enum egion	Pedestal / drywell region										
compo	sitions	UO ₂ (L	J,Zr)O ₂	SUS-Zry alloy	Zr/Fe boride	SUS	(U,Zr)O ₂	(U,Zr)O ₂	(Zr,U)SiO ₄	$CaAl_2Si_2O_8$	CaSiO	SiO	Fe-Si	Fe-Cr-Ni alloy				
Fuel	1F-1			0			0	79										
amount	1F-2				54			54										
(t-UO ₂)	1F-3			0			11	99										
Predi amou	cted unts	COI	Majo mpon	r ents	Minor compo nents	N comj	1ajor ponents	Major components Minor components										
Assur compose for p proc treatr	med sitions yro- ess nent		(U,Z	Core Zr)O ₂ +	Debris SUS-Zry	/ alloy	1	MCCI Debris (U,Zr)O ₂ + (Zr,U)SiO ₄ + CaAl ₂ Si ₂ O ₈ + CaSiO + Fe-Si + Fe-Cr-Ni alloy										

MCCI: Molten Core Concrete Interaction

3. Public literature search on debris treatment methods

Comparison of major debris treatment methods (1/2)

	Category	Pyro (metal)	Pyro (metal)	Pyro (oxide)					
	Base process	CaCl ₂ electro-reduction (ER) + LiCl-KCl electro-refining (ER)	LiCl electro-reduction (ER) + LiCl-KCl electro-refining (ER)	Cl ₂ gas chlorination + NaCl-CsCl electro-winning (EW)					
Potentia	l for debris treatment	 + Could reduce + Higher reduction potential + Some experiments on debris less experience than LiCl electro-refining 	 + Could reduce + Some experiments on debris Li_xZr_yO_z produced as an impediment to electro-refining 	+ Could dissolve debris + Some experiments on debris					
	Debris dissolubility	Yes	Yes (except Li _x Zr _y O _z)	Yes					
Criteria	Pu recovery with U and MA	Yes	Yes	No					
in this study	Compatibility to metal fuel recycling	Yes	Yes	No					
	Secondary waste amount	Large	Small	Large					
Assumed process in this study		✓ [Option 1]	✓ [Option 2]						

3. Public literature search on debris treatment methods

Comparison of major debris treatment methods (2/2)

	Category	Pyro (oxide)	FLUOREX	PUREX					
	Base process	molybdate melt + pyro-, or aqueous-process, etc	F ₂ gas volatilization + solvent extraction	Nitric acid solution + solvent extraction					
Potentia	l for debris treatment	 + Could dissolve debris + Some experiments on debris Unknown for MCCI Debris 	 + Could dissolve debris + Some experiments on debris Unknown for MCCI Debris 	 Difficult to dissolve debris+ Some experiments on debris					
	Debris dissolubility	Core debris: maybe yes MCCI debris: unknown	maybe yes	No					
Criteria	Pu recovery with U and MA	No	Yes	No					
study	Compatibility to metal fuel recycling	No	No	No					
	Secondary waste amount	(unknown)	(unknown)	Larger					
Assumed process in this study									

4. Pyroprocess for debris treatment

4. Pyroprocess for debris treatment

Basic thoughts on debris treatment process

- The most important thing for debris treatment process is high dissolution capability of various and complicated debris compounds such as MCCI debris.
- > There are many unknown factors in every technologies, so far.
- Among them, pyroprocess seems to be one of the promising technologies for debris treatment, and it can be directly used also for metal fuel fast reactor cycle in the future as well.
- CaCl₂ electro-reduction vs LiCl electro-reduction for debris treatment
 - ✓ Reduction capability : $CaCl_2 > LiCl$
 - ✓ Past experiences (on fuel cycle research) : CaCl₂ < LiCl</p>
 - ✓ Major technical concerns (refer to the appendix for details)
 - CaCl₂: low reduction speed at the inner area of the debris,
 - higher operating temperature, increased used salt waste
 - LiCl : production of Li₂ZrO₃ that impedes the process
- In this study, "CaCl₂ electro-reduction + LiCl-KCl electro-refining (Option 1)" is selected as the first option, so far, from a viewpoint of higher reduction capability.

(1) Shearing and grinding

- > Clarify shearing/grinding conditions based on the debris characteristics
- Confirm durability of the edge against high hardness borides
- Evaluate applicability of the shredder system that had been developed for oxide spent fuel
- Establish the pretreatment method of the debris for the electroreduction process
- > Confirm the loss rate, especially for fuel materials in the process

(2) Electro-reduction

<u>CaCl₂</u>

- Establish the electro-reduction condition
 - Debris material form (powder, sintering, ingot, etc)
 - Mitigate low reduction speed at the inner area of the debris
- > Establish the countermeasures against high temperature operation (850°C)
 - Select proper structural materials
 - Reduce operating temperature using CaCl₂-based low-melting salts, etc
- > Clarify the treatment of the residual salt (CaCl₂) in the reduced product
- Confirm material balance in the process

<u>LiCl</u>

- Establish the electro-reduction condition
 - Debris material form (powder, sintering, ingot, etc)
 - Mitigate production of lithium zirconate (Li₂ZrO₃)
- > Develop separation technology of lithium zirconate (Li_2ZrO_3)
- Confirm material balance in the process

(3) Electro-refining

- Clarify electro-winning behavior of the reduced product alloyed with debris constituents such as Fe, Si, Al, Zr etc.
- Establish the treatment of the uranium oxide produced by lithium zirconate in the case of LiCl electro-reduction
- Confirm material balance in the process

(4) Cathode processing

- Establish the distillation condition of salt where some debris constituents are mixed in.
 - Solid cathode (U), Liquid cathode (TRU)
- Confirm material balance in the process

(5) Fuel fabrication

- Establish the injection casting conditions (temperature, time, atmosphere, pressure, etc.) for metal fuel with some debris constituents as impurities
- Establish the criteria on the allowable inclusion of debris constituents in the fuel product
- Confirm material balance in the process

(6) Used salt treatment

- Develop the recycling technology for the used CaCl₂ salt treatment
- Develop separation technology of the reduced debris constituents (Fe, Si, Al, Zr, etc.) from used salt if they are dissolved in.
- Clarify influence of the debris constituent inclusion in the conventional used-salt treatment processes and establish its countermeasures if needed.
- Confirm material balance in the process

6. Discussions

- CaCl₂ electro-reduction (Option 1)
 - ✓ Can "CaCl₂ electro-reduction" really reduce most of the debris components including MCCI?
 - ✓ Is there any reasonable method for used CaCl₂ salt treatment to reduce the process wastes?
 - ✓ Does the combination of CaCl₂ salt process (reduction) and LiCl-KCl salt process (refining) has technical issue?
 - ✓ Are there any other critical issues?
- ➤ LiCl electro-reduction (Option 2)
 - ✓ How to solve the Li_2ZrO_3 issue?
 - ✓ Are there any other critical issues on Core Debris and MCCI debris treatments?
- LiCI-KCI electro-refining (common to Option 1 & 2)
 - ✓ How do you think about the behavior of the reduced product alloyed with debris constituents such as Fe, Si, Al, Zr, etc?
- > Are there further improvement ways on pyroprocess for debris treatment?

TOSHIBA Leading Innovation >>>

Backup slides

Technology roadmap (draft) on pyroprocess for debris treatment

Only for discussion

Years	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21 2	2 2	23 24	4	25 2	26	27	28	29 30
Development		Principle Laboratory										Oper									ation⊽								
Phase	verification				scale	e (Engineering actual proof							Demonstration facility for the debris treatment													int		
(1)Shear pulverization																													
]]	Sev	eral	100g]]]]	ļ	ļ				ļ							ļ	{			
(2)Electro-reduction	Sev	/eral	10g s	scale	ļ	scale	; ;	Pro	cess	selec	tion			<u> </u>												}			
<u> </u>	Sev	 /eral	100 9	cale	Sov	oral '	100a	▽			Seve	ral k <u>o</u>) scal	e I										-+-					
⊖CaCl ₂			109 .		500	scale	2009 2		<u> </u>					<u> </u>		1		+						-					
								1				1														1			
(3)Spent salt treatment		ļ																						_					
(4)Electro-refining																								_					
(5)Cathode processing																													
(6)Fuel fabrication																													
																						A	ppro	val	of				
]]]]]		}]		Basi	c de	sign				d	lesigr	۱a	nd				
			<u> </u>			<u> </u>								<u> </u>					De	tail c	lesign) c	onstr	uc	tio]			
	 													 		. 							n pl	an		;	Cons	struc	tion
	 		·		<u> </u>	+	<u> </u>		<u> </u>	+														-					

