

Ymir-1によるS-124

航行警報 (Navigational Warning)

の配信実験

2025年 11月

実験の目的と概要

Navigational Warning

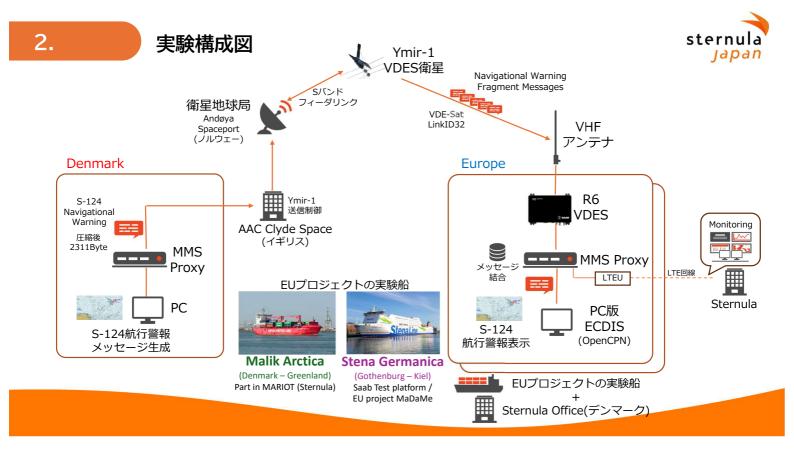
JAPAN. IOKYO BAY.

DUE TO TSUMANI GENERATED BY AN EARTHQUAKE OFF KAMCHATKA
AT 302325 UTC JUL 29 2025 (08:25 JST JUL 30),
ENTRY INTO TOKYO BAY IS RESTRICTED UNTIL FURTHER NOTICE.
MARINERS ARE ADVISED TO NAVIGATE WITH CAUTION
AND FOLLOW INSTRUCTIONS FROM PORT AUTHORITIES.

[Title]

JAPAN. TOKYO BAY.

sternula

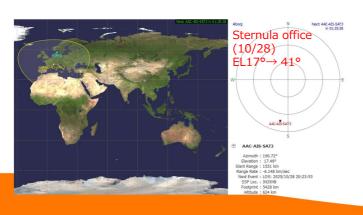

Japan

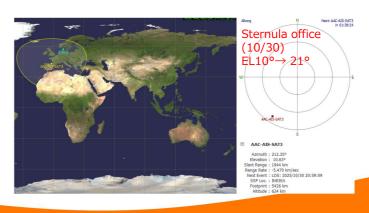
[目的]

衛星VDESを使用して、S-124データセットによる航行警報(Navigational Warning)の配信が 可能である事を、Ymir-1衛星を使用して実証する。

[概要]

- 実験用のS-124航行警報メッセージを用意し、MMS Proxyで 衛星VDES送信用に圧縮したデータを作成する。
- AAC Clyde Spaceにて、上記データを分割してYmir-1衛星から送信するスケジューリングを行う。
- 欧州のVDES実験船舶、およびSternula事務所設置のR6で受信する。
- R6が受信した情報をMMS Proxyが結合し、PC版のECDIS(OpenCPN)上に航行警報を表示 する。


3.


送信スケジュール

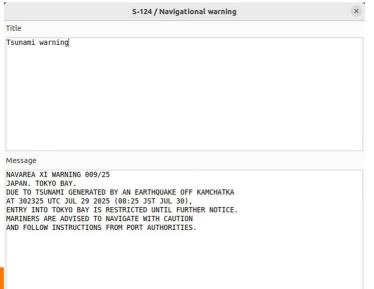
デンマーク、スウェーデン周辺の船舶、およびSternula事務所設置のR6で受信実験を行うため、以下の時刻(UTC)でYmir-1からS-124のデータ送信を行うように、スケジューリングした。

	Tx start	Payload VDE off	Transmit duration (seconds)	Comments	
28/10/2025	20:14:20	20:16:30	130	Max elevation for Linkoping 30 degrees	
29/10/2025	20:31:30	20:33:40	130	Horizon pass to the west	
30/10/2025	20:49:30	20:51:40	130	Horizon pass to the west	

受信結果

今回の実験では、S-124形式の航行警報メッセージを圧縮した2311Byteのデータを、20Byteずつ116個のFragment Messageに分割し、Ymir-1から送信した。

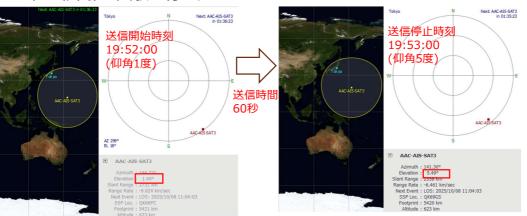
メッセージは3日間で繰り返し送信し、一部欠損があった場合も、再送信時に当該部分を受信できれば、 MMS-Proxyがメッセージを復元できる。


各受信局が受信したFragment数は以下の通り。メッセージの復号に必要なFragment Messageがすべて受信され、S-124形式の航行警報をOpenCPN上に表示させる事が出来た。

受信局	1日目	2日目	3日目
Sternula Office	138	128	116
Malik Arctica	N/A (欠測)	128	63
Stena Germanica	N/A (欠測)	128	118

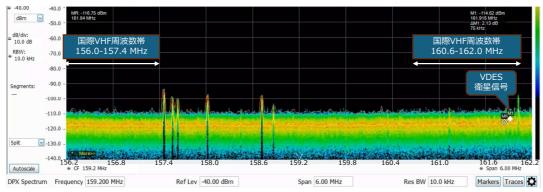
航行警報の表示

Ymir-1から受信したFragment Messageから、MMS-ProxyがS-124メッセージを復号。OpenCPNのS-124表示プラグインソフトが、Navigational Warningアイコンを表示。 アイコンをクリックすると、詳細が表示される。



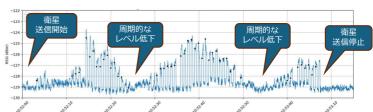
日本での受信実験

- ・VHFアンテナを、東京湾周辺のノイズ環境の静かな場所に仮設し、スペクトラムアナライザーで受信レベルを記録すると共に、衛星受信専用に設定したR6 VDES端末の受信部レベルモニタ情報を記録する。
- ・Ymir-1衛星からは、LinkID 32で試験電波を放送する。
- ・衛星VDES電波の制限国に送信ビームがかからないよう、日本の南東海上に飛来した短いタイミング(60秒間)で試験を行う。



sternula *Japan*

7.


日本での受信実験結果

国際VHF周波数帯のスペクトラムアナライザー画面(衛星信号受信時)

Ymir-1衛星信号受信レベル

- ・初めの10秒程度は、仰角が低く、障害物等の影響でレベルが低い。
- ・衛星信号が受けられる仰角になった後も、周期的 に受信レベルが下がる現象が確認された。
- ・レベル低下時を除き、R6でも信号検出ができた。

- 新しいS-100対応ECDISへの航行警報の伝送手段として、衛星VDESによるS-124データセット の配信が可能である事が確認できた。
- 船によっては構造物や環境ノイズ等の影響により、一部データが欠落することもあったが、メッセージを繰り返し衛星から送信することで、欠落したデータを補完できる。VDESでは自船のAISが送信した際にも受信情報の欠落が発生するので、繰り返し送信によるデータの補完は重要な機能である。
- 今回のYmir-1からの送信では、衛星VDES用に定義されているいくつかのLinkIDの中で、最も受信しやすいLinkID32を使用して所定の成果を得た。今後、より速いLinkIDでの通信実験にも取り組む。
- 日本での受信実験は、低仰角での限られた時間での実験となった。受信レベルが安定しない現象があったが、低仰角でも衛星VDESの受信は可能である事が確認された。
- 今後は日本国内においても衛星VDESの送受信実験ができるよう、取り組みを進める。

Thank you

For your attention

株式会社 スターヌラ・ジャパン

Email

info@sternula.co.jp

Website

www.sternula.co.jp

Address

〒231-0007 神奈川県横浜市中区弁天通6丁目85番 宇徳ビルディング6階 (株)東洋信号通信社内

