

Bio-energy with carbon capture and storage (BECCS) Negative carbon dioxide emissions			
$\stackrel{0}{0}_{0}^{2} 2$			
1			
${ }_{2013}^{1 / 1}$			
\square Fossil CCS power generation (captured)	- Fossil CCS industry and fuel transformation (captured)	\square Bio-CCS fue) transformation (negative emission)	- Bio-CCS power generation (negative emission)
		Source: IEA (2016), Energy	Technology Perspectives 2016.

CSS is a key contributor to global emissions reductions

Source: IEA (2016), Energy Technology Perspectives 2016.
\qquad

| Tomakomai CCS Demonstration Project |
| :--- | :--- |

Environmental Impact Assessment (EIA) in the ACT Objective - Estimation of CO_{2} dispersion and its impact assessment on the assumption that stored CO_{2} leaks out to the sea Process - Consideration of leakage scenarios and its simulation - CO_{2} migration in the geological formation - CO_{2} dispersion in the seawater column - Base-line survey for the existing marine environment - Impact assessment

	苞		
	$\underbrace{\top}_{0}$	$\begin{aligned} & V \\ & E \\ & E \\ & \frac{\pi}{3} \\ & \underset{\gamma}{2} \\ & \hline \end{aligned}$	V 8 8 8 8 8

Collaboration with QICS project UK Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage

Example of estimation of ecological impacted area
Summary from QICS

sampling
mesurements

Ship-board
mesurements

- The biological impact was minimal and the recovery was rapid.
Multiple monitoring methodologies in a staged approach are
recommended.
Impacts of CCS leakage should not be seen as an impediment to the
development of full scale CCS.

Concluding Remarks
CCS is essential to achieve ambitious temperature target
of "well below $2^{\circ} \mathrm{C}$ ".
Experience of commercial scale offshore CO_{2} storage
have pave the way for widespread deployment of CCS
across power and industrial applications.
Environment impact assessment for offshore CO_{2}
storage:
\checkmark Important for public acceptance
\checkmark Necessitates a wider dialogue between scientists,
\checkmark policymakers, the public and civil society groups

Session 2-3

"Ocean Acidification: Another Reason to Act"

Tetsuji Ida

Senior Staff Reporter,
Kyodo News

Tetsuji Ida, born in Tokyo 1959, is a graduate of Tokyo University.
He studied sociology of science and technology. Since he was assigned as a staff writer of Kyodo News in 1983, he has covered environment and development issues from the Tsukuba Science City bureau and the science news desks in the Tokyo. From 2001 to 2004, he spent 3 years in Washington bureau in the US as a science correspondent. Since 2006, he is in a current position.

He begun working on environment and development issues in 1987; one of his major subjects is climate change since he is reporting this issue before UNFCCC was formally adopted and he was a main writer of KYODO NEWS at COP3 in Kyoto.

He reported environment and poverty issues and conservation efforts on the ground in many counties in Asia, Africa and the South America.

He has covered many international conferences on multilateral environmental agreements including UNFCCC, CITES, CBD, Montreal Protocol, Ramsar Convention, WSSD in 2002 at Johannesburg, South Africa and Rio+20, Brazil in 2012. He has authored or coauthored twelve books on global warming, fisheries resources, toxic chemicals and natural resources management.

Reducing 二酸化炭素	
丸＂Historical＂Paris agreement in 2015「歴史的」と言われるパリ協定	
Each Party shall prepare，communicate and maintain successive nationally determined contributions that it intends to achieve． Parties shall pursue domestic mitigation measures with the aim of achieving the objectives of such contributions．	
各国が目標•取り組みを提出•達成目指す義務	
Entry into force on Nov． $4^{\text {th }}$ ．Ratified by 122 countries 既に122力国が批准•15年11月4日に発効	

OA issue in post PA era パリ協定後の海洋酸性化問題	$\because \because: \%$ $\because \because: \%$ $\because \because:$ $\vdots \%$
＊less scientifically uncertain科学的な不確実性は少ない～必ず起こる	
＊Existence of huge inertia in the ocean効果が出るまでに長い時間がかかる	
\star Oceans are already under sever stresses海の環境は既に深刻•危機的状況にある	
丸Some areas are very vulnerable特に影響を受けやすい場所がある	

OA issue in post PA era
パリ協定後に考える海洋酸性化問題
太AO and Japan
•Japan as an Inland state
そもそも日本は島国
•Huge EEZ area
広大な排他的経済水域（EEZ）
•Heavenly dependent on the ocean
海に多くを依存している

CO2 reduction in Japan日本の二酸化炭素排出削減 \star Growing emissions since 1990 1990年以降，つい最近まで減っていない ฝ No reduction from industrial sector Growing emissions from offices and houses進まない産業界の削減 \＆家庭・オフィスの排出増 ＊Impact of Fukushima disaster in 2011東京電力福島第1原発事故の影響	

\％\％	

Session 2-4 Moderator Speech

 Discussion

 Discussion

 "Measures for Converting Response into Policy"

 "Measures for Converting Response into Policy"}

Joji Morishita
Professor,
Tokyo University of Marine Science and Technology

He was Director-General of Japan's National Research Institute of Far Seas Fisheries from 2013 to April 2016. He is Japan's Commissioner to and Chair of the International Whaling Commission (IWC).

He also serves as Chair of the Scientific Committee of the North Pacific Fisheries Commission (NPFC).
He represented Japan at the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), the Meeting on High Seas Fisheries in the Central Arctic Ocean, and other international ocean and environmental meetings including the Convention on Biological Diversity, CITES, and UN organized meetings.
He has been involved in international fisheries issues since 1982 in the Japanese Government and served the Japanese Embassy in the United States from 1993 to 1996. PhD (Agriculture), Kyoto University, Master of Public Policy (MPP), Harvard University. BS, Kyoto University.

Discussion Topics of Session 2;

1. What are the policy objectives for ocean acidification?

Prevention, Adaptation, Monitoring/Assessment and/or their combination? We need an agreement on plans and priorities. Do we need an international instrument to confirm the agreement?
2. Do we have a system/organization to implement the policy?

Problems caused by ocean acidification needs to be addressed by some governments/international organizations/non-governmental organizations. However, do we have such a system/organization that can handle the problems? It could be compartmentalized, divided, insufficient, or even non-existent. Who will take the lead?
3. How can we inform and persuade stakeholders, including decision makers, to take actions?
Scientific information can be highly technical, could involve uncertainties, and may convey no urgency. Information needs to be processed into a "digestive" form with a right message for the stakeholders. Who are the stakeholders?
4. Where are the resources to address this challenge?

Depending on the policy objectives and measures to implement them, necessary financial and organizational resources, including expertise, have to be secured.
5. Road map

Necessary steps need to be identified. Milestones. Triggers for next steps. Time scope.

"Synthesis of Information on
 North Pacific Ocean Acidification Studies by the North Pacific Marine Science Organization (PICES)"

Tsuneo Ono

Chief Scientist,
Japan Fisheries Research and Education Agency (FRA)

Research Interests
*Temporal variation of physical/chemical ocean environment both by natural and by anthropogenic forcings, such as PDO and/or global warming
*Response of oceanic ecosystems to ocean environmental changes
*Carbon and nutrient cycles within North Pacific Ocean

Education

1997
Ph.D. in Fisheries Sciences, Hokkaido Univ.

Synergistic Activities
2004-2006 Contributing Author for IPCC Fourth Assessment Report
2006-present Member of PICES Section for Carbon and Climate (co-chair from 2015)

