a global condition with local effects

- We need local through global scale
observations in order to get either correct
- This issue demands our coordination,
networked skill, and open analysis

Why is a global approach needed ?
Processes are occurring at global scales; therefore we need to go beyond local measurements and observe on global scales in order to understand OA and its drivers correctly. We need information and data products that can inform policy and the public with respect to global status of OA and implications for overall ecosystem health (status) of the planet. We need sufficient data and understanding to develop predictive skills and early warning systems. This requires coverage at appropriate scales, nesting local observations within global context.

$\underset{\text { - Hobart, TAS, AUS (2016) }}{\text { GOA-ON Workshop }} 3$

Session 1-1
 "The Status of Ocean Acidification in the Subtropical Pacific Region"

Chen-Tung Arthur Chen
Professor,
Department of Oceanography, National Sun Yat-sen University

Professor Chen has been a Professor of the Department of Oceanography since 1984. He has sat on numerous international committees, including the International Geoshpere-Bioshpere Programme, the IGBP/IHDP/WCRP/DIVERSITAS GCP, MAIRS, SCOR and WOCE. He also served as one of the executives of the JGOFS SSC between 1992-1995. Just prior to that, he had helped to form the Joint JGOFS/LOICZ Marginal Seas Task Team in 1991, and served as its chairman until 1995.

Prof. Chen is at present an associate editor of Mar. Chem. (since 1993), Cont. Shelf Res. (Since Oct. 2016), Acta Oceanol. Sin. (Since Oct. 2016), and a member of the editorial board of J. Marine Syst. (since 2001), Acta Oceanol. Sin. (2004 - Sept. 2016) and Cont. Shelf Res. (2007 - Sept. 2016), all SCI journals. He also served as an editor of the J. Oceanogr. between 1998 and 2010. Prof. Chen's specialty is on the nutrients and carbon cycle in the oceans, ocean acidification (including hydrothermal systems), global change (including paleoclimates) and sediment heavy metals. His recent work is across disciplines toward integrated Earth System science on the regional to global scales. Besides having 350 of his own scientific papers published (http://ctchen.ocean.nsysu.edu.tw/Biography--English.htm), He was awarded the highly-coveted 5M¥ Biwako Prize for Ecology from Japan in 1997 and is a Chair Professor of the NSYSU since 2006.

The status of ocean acidification in the subtropical Pacific Region

Chen-Tung Arthur Chen ${ }^{1}$, Hon-Kit Lui ${ }^{2}$
1 Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan. E-mail: ctchen@mail.nsysu.edu.tw
2 National Applied Research Laboratories, Taiwan Ocean Research Institute (TORI). E-mail: hklui@narlabs.org.tw

Abstract

Because of the penetration of the anthropogenic CO_{2} the world oceans have been acidifying. Feely and Chen (The effect of excess CO_{2} on the calculated calcite and aragonite saturation horizons in the northeast Pacific, GRL, 1982, 9, 1294-1297) reported for the first time that the aragonite and calcite saturation horizons will become shallower, thus threatening biota with calcium carbonate skeletons and shells. Indeed it has been observed that waters at the shelf break of the East China Sea (ECS) and in the Okinawa Trough have been acidifying between 1982 and 2007 (Lui et al., Acidifying intermediate water accelerates the acidification of seawater on shelves: An example of the East China Sea, CSR, 2015, 111, 223-233). The use of apparent oxygen utilization (AOU) data to quantify the change in pH due to physical changes and changes in biological activities is demonstrated. The results thus obtained reveal that the drop in pH of the Kuroshio Intermediate Water (KIW) in the ECS is a result of not only the intrusion of atmospheric CO_{2}, but also an increase in AOU concentration. The acidification rates caused by the increasing AOU concentration could contribute up to $-0.00086 \pm 0.00017 \mathrm{pH}$ unit yr^{-1} at 900 m in the Okinawa Trough and $-0.00082 \pm 0.00057 \mathrm{pH}$ unit yr^{-1} on the shelf break of the ECS. These values are equivalent to 54% and 51%, respectively, of the acidification rate of $-0.0016 \mathrm{pH}^{\text {unit } \mathrm{yr}^{-1}}$ based on an assumption of the air-sea CO_{2} equilibrium. When the effects of changing AOU and θ are eliminated, the acidification rate in the basin of the ECS captures the rate of change that is caused by an increase in anthropogenic CO_{2} concentration. In contrast, when the effects of changing AOU and θ are eliminated, the acidification rate at the shelf break is 69% higher than the rate based on an assumption of the air-sea CO_{2} equilibrium. Since the seawater on the shelf contains a higher proportion of the South China Sea (SCS) seawater and coastal water than does that in the Okinawa Trough, the result herein may imply that the SCS seawater, coastal water, or a combination of them suffered a higher acidification rate during the studied period. This study demonstrates that changing the carbonate chemistry of both incoming offshore intermediate seawater and coastal water results in the acidification of seawater on a continental shelf. The results herein reveal a situation in which the acidification of coastal seawater may be faster than expected when the reduction of pH of the incoming offshore seawater is considered along with the increasing atmospheric CO_{2} and terrestrial nutrient fluxes.

Acidification in the SCS and the West Philippine Sea will also be presented.

The status of ocean acidification in
the subtropical Pacific Region
Chen-Tung Arthur Chen ${ }^{1}$, Hon-Kit Lui ${ }^{2}$
1 Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan. E-mail: ctchen@mail.nsysu.edu.tw 2 National Applied Research Laboratories, Taiwan Ocean Research Institute (TORI). E-mail: hklui@narlabs.org.tw

${ }_{100}^{-50} \mathbf{4 0}^{\mathbf{m}}$
$50-{ }^{-10} \mathrm{~m}_{0.0136 \pm 0.118} \mu \mathrm{~mol} \mathrm{~kg}{ }^{-1} \mathrm{yr}^{-1}, \mathrm{p}=0.9081$ -

 0 - $0.300 \pm 0.292 \mu \mathrm{~mol} \mathrm{~kg}^{2} \mathrm{yr}, \mathrm{p}=0.3060$ $100-95 \mathrm{~m}$
 $50 \quad 0.277 \pm 0.401 \mu \mathrm{~mol} \mathrm{~kg}^{4} \mathrm{yr}, \mathrm{p}=0.4914$ OLOZ s00Z 0002 s661 0661 s861 0861 Year

Session 1-2
 "Progress of Ocean Acidification in the western North Pacific"

Masao Ishii

Head of 3rd Laboratory,
Oceanography and Geochemistry Research Department,

Meteorological Research Institute, Japan Meteorological Agency

Education:

Ph.D. in Science (Chemistry), Nagoya University, 1989

Expertise:
Ocean Carbon Cycle and Biogeochemistry
Measurements of CO2 system variables in seawater

Appointments:
2013- Head Scientist of 3rd Laboratory, Oceanography and Geochemistry Research Department, Meteorological Research Institute, Japan Meteorological Agency

International activities:
2017- UNESCO/IOC and SCOR International Ocean Carbon Coordination Project (IOCCP) - Global Ocean Observing System (GOOS) Biogeochemical Panel, co-chair.

2015- Integrated Marine Biogeochemistry and Ecosystem Research (IMBER), member of Scientific Steering Committee.

2008- North Pacific Marine Science Organization (PICES), member of Section on Carbon and Climate (S-CC)

	$$					

Subarctic

Trends in the surface of the tropics at $137^{\circ} \mathrm{E}, 7^{\circ} \mathrm{N}$		
	$\mathrm{pCO}_{2}{ }^{\text {sw }}$ ($\mu \mathrm{atm}$)	$+1.06 \mu \mathrm{~atm} \mathrm{yr}^{-1}$
	$\underset{(\mu \mathrm{mol} / \mathrm{kg})}{\mathrm{nDIC}}$	$+0.66 \mu \mathrm{~mol} \mathrm{~kg}^{-1} \mathrm{yr}^{-1}$
	$\begin{aligned} & \text { @HST } \end{aligned}$	$\pm 0,0003$ …\%:
	תarag	
	Temp. (${ }^{\circ}$)	
- Trends of CO_{2} increase and acidification are clear, but their rates of change are lower than in the subtropics and than the rates under the condition of air-sea CO_{2} equilibrium.	Salinity	$\because \therefore \therefore A^{2006}$

Why ocean acidification is slower in the warm pool?

Session 1-3
 "Ocean Acidification Studies in the Seas around Japan"

Tsuneo Ono

Chief Scientist,
Japan Fisheries Research and Education Agency (FRA)

Research Interests
*Temporal variation of physical/chemical ocean environment both by natural and by anthropogenic forcings, such as PDO and/or global warming
*Response of oceanic ecosystems to ocean environmental changes
*Carbon and nutrient cycles within North Pacific Ocean

Education
1997
Ph.D. in Fisheries Sciences, Hokkaido Univ.

Synergistic Activities
2004-2006 Contributing Author for IPCC Fourth Assessment Report
2006-present
Member of PICES Section for Carbon and Climate (co-chair from 2015)

Effects of diurnally-variabl by culture experimen	pCO_{2} on ezo-abalone larvae [Onitsuka et al., submit.]
	Constant treatments Targeted $p \mathrm{CO}_{2}$ $400 \mu \mathrm{~atm}, 800 \mu \mathrm{~atm}, 1200 \mu \mathrm{~atm}$ Results of monitoring (Dotted lines) $430 \pm 15,732 \pm 19,1175 \pm 20 \mu \mathrm{~atm}$
	Diel cycle treatments Targeted $p \mathrm{CO}_{2}$ 400-1200 $\mu \mathrm{atm}, 800-1600 \mu \mathrm{~atm}$ Results of monitoring (Solid lines) 420-1189 $\mu \mathrm{atm}, 739-1537 \mu \mathrm{~atm}$
Days after initiation of experime	

Results 2: Effect of integral pCO_{2} on larval fitness	
	The aragonite saturation state around $\Omega=1.0$ is equivalent to $1100 \mu \mathrm{~atm} p \mathrm{CO}_{2}$. Integral pCO2 over 1100 atm $=\sum(P-1100) i$ $\mathrm{P}: \mathrm{pCO}_{2}$ over $1100 \mu \mathrm{~atm}$ i : exposed hours to $p \mathrm{CO}_{2}$ over $1100 \mu \mathrm{~atm}$ Abnormality rate increased with increment of integral $p \mathrm{CO}_{2}$ over 1100 uatm
Integral pCO_{2} over $1100 \mu \mathrm{arm}$ ($\mu \mathrm{atm} \mathrm{h}$) Open markers: diel cycle treatments Solid markers: constant treatments	Larval shell length decreased as integral $p \mathrm{CO}_{2}$ over 1100μ atm increased.

Consequence of diurnal/seasonal variation of pH in coastal area:
What does biota respond to? Average or Minimum?

Results : Effects on larval fitness		
25 25 20 ¢ 15 10 5 0 60 40	Mortality	There were no significant differences in mortality rate among all the pCO_{2} treatments.
		Abnormality rate was significantly higher in the $\mathbf{1 2 0 0 \mu a t m}$, and more in 800-1600 μ atm
	Larval shell length	Shell length in the 800-1600 μ atm was significantly shorter but not in the $\mathbf{1 2 0 0} \mu \mathrm{atm}$.
[Onitsuka et al., submit.]		

Summary: present knowledge on ocean acidification In the waters around Japan
1] observed pH decrease in open ocean: $-0.0013 \sim-0.0018 / \mathrm{y}$ (subtropical surface) $-0.005 / \mathrm{y}$ (subpolar surface) 3] existence of high diurnal / seasonal variation of pH even in one site, and 4] some biota exhibit high sensibility not against daily average but daily minimum pH (or daily integral pH -excess from the level equivalent to $\Omega_{\mathrm{ara}}=1$) 5] existence of eutrophication-oriented ocean acidification in parallel with anthropogenic CO_{2} - oriented ocean acidification : This may more cause severe effect to local biota when considering historical biological adaptation.

different biotic response between "natural eutrophication" and "polluted eutrophication"
natural eutrophication (inner-Bay, estuary etc.)
polluted eutrophication (arasaki district)

Session 1-4
 "Ocean Acidification and its Effects on Pacific Island States"

Tommy S. Moore

Pacific Islands Global Ocean Observing System Officer, Secretariat of the Pacific Regional Environment Programme (SPREP)

Professional Interests

Climate Change and Oceans; Bridging the Gap Between Science and Policy/Resource Managers; Geochemistry; Chemical Oceanography; Ocean Observing; Coupling of Physical, Chemical, and Biological Measurements; Environmental and Marine Conservation

Professional Experience

Secretariat of the Pacific Regional Environment Programme
Pacific Islands Global Ocean Observing System Officer
Apia, Samoa

Project manager for the Pacific Partnership on Ocean Acidification. Supporting and developing ocean observing programmes in the Pacific Islands region. Supporting international efforts such as the Argo programme. Raising awareness of ocean acidification in the region and seeking funding for adaptation efforts. Working as a member of the Pacific Meteorology Desk Partnership to enhance meteorology and marine forecasting in the region. Chair of the Pacific Islands Marine and Ocean Services Panel.

Pacific Islands Conservation Initiative
Lead Science Officer

IMEDEA
Post-Doctoral Researcher

University of Montana
Post-Doctoral Researcher

Rarotonga, Cook Islands
Sep 2013 to Dec 2013

Esporles, Balearic Islands, Spain
Dec 2011 to Aug 2013

Missoula, MT, USA
Feb 2009 to Mar 2011

Education
University of Delaware
Ph.D., Oceanography

Lewes, DE, USA
July 2003 to Aug 2008

Dissertation Topic: Time-series electrochemical studies in the lower Delaware Bay and at the $9^{\circ} 50^{\prime} \mathrm{N}$ East Pacific Rise hydrothermal vent field

Boston University	Boston, MA, USA
M.A., Earth Sciences	Sept 2001 to May 2003
University of Montana	Missoula, MT, USA
B.Sc., Geology	Sept 1996 to May 2001

2*)SPREP

Vulnerability of reef fisheries

Loss of reef habitat \& structure (indirect)

Laval stages - reduced survival,
growth, metabolism
Larval reef fish loss of olfactory
senses (detecting settlement habitat \& predators), Reduced growth and more shell
deformities in molluscs
Altered sea cucumber larval
 - Declining productivity

(4) SPREP

Vulnerability of aquaculture

- Pearl oysters - reduced survival and growth of wild spat; weaker shells and reduced pearl quality Shrimp - possible deformities in blue shrimp due to thinner shell Seaweed - growth enhanced by higher CO_{2}, however, likely to be offset by other climate impacts

Marine ornamentals - weaker
shells and deformities (giant
clams), reduced growth and density

Session 1-5 Moderator Speech

Discussion

"Issues in the West Pacific Region"

Yukihiro Nojiri

Professor,
Department of Earth and Environmental Sciences, Hirosaki University

1975-1981	Chemistry Department, Faculty of Science, University of Tokyo
1981-1995	Researcher, National Institute for Environmental Studies (NIES)
1995-2006	Head, Global Warming Mechanism Research Laboratory
2001-2006	Head, Carbon Cycle Research Laboratory, NIES
1993-2003	Associate Professor, Department of Biology, University of Tsukuba
$2004-2006$	Counselor, Secretary for Council of Science, Technology and Policy, Cabinet Office,
	Government of Japan
2006-2011	Vice Director, Center for Global Environmental Research (CGER), NIES
$2008-2013$	Professor, Graduate School of Science and Technology, Tokyo Institute of Technology
2011-2015	Principal Senior Researcher, CGER, NIES
2015-present	Professor, Graduate School of Science and Technology, Hirosaki University

Research Interest
Ocean carbon cycle and related biogeochemical parameters
Biological impact of ocean acidification
Methodology of national and regional greenhouse gas inventory

Activity in international research
Lead author and review editor, IPCC AR4 and AR5
Co-chair
PICES WG 13 \& 17

SSC member
IOCCP (2007-2012), SOLAS (2010-2015)

Discussion Topics of Session 1:

1. Impacts on our oceans and corresponding issues

- Subarctic region
- Subtropical region
- Pacific island States

2. Impacted areas and corresponding issues

- Coastal environment
- Ecosystems of offshore regions

3. Necessary measures

- Increase observations
- Information dissemination
- Creation of research partnerships

Session 2-1

"Social Regional Impacts of Ocean Acidification in Japan"

Masahiko Fujii

Associate Professor,
Faculty of Environmental Earth Science,

Graduate School of Environmental Science, Hokkaido University

Education
2001 Ph.D., Environmental Earth Science, Hokkaido University, Japan
"A marine ecosystem modeling applied to the subarctic time series observation"
1998
M.Sc., Environmental Earth Science, Hokkaido University, Japan
"Roles of biogeochemical productivity in the carbon cycle using a simple global ocean model"
1996
B.Sc., Earth and Planetary Sciences, Kyushu University, Japan
"Estimation of diabatic meridional circulation based on the UARS data"

Employment
Jun 2008 - Present: Associate Professor, Graduate School of Environmental Science, Hokkaido University, Japan
Aug 2006 - May 2008: Associate Professor, Sustainability Governance Project, Center for Sustainability Science, Hokkaido University, Japan
Jan 2006-Jul 2006: Research associate, School of Marine Sciences, University of Maine, USA
Aug 2003 - Dec 2005: Postdoctoral research scholar, School of Marine Sciences, University of Maine, USA
Jan 2002-Jul 2003: Domestic postdoctoral research fellow of Japan Society for the Promotion Science, National Institute for Environmental Studies, Japan

Language skills: Japanese (mother tongue), English
Specific skills: PADI Master Scuba Diver

Research interests

- Future Projection and mitigation/adaptation of effects of global warming and ocean acidification
- Education and research for developing renewable energy

Outline
- Impacts on coral reefs in Japan
- Impacts on Japanese fisheries and aquaculture

Ratio of wild calcifier catch
to total fish catch (\%)
Mitigation > Adaptation
Arabs
Hokkaido (28\%)
Aukui (33\%)

Conclusion and RemarkS
Estimated OA-derived economic loss in Japan in the $21^{\text {st }}$ century
- Tourism in coral reefs: 22 -67 billion USD
- Fisheries in coral reefs: 5-6 billion USD
- Fisheries and aquacullture in Japan: $15-37$ billion USD
Adaptatively large economic loss in coral reefs due to the extinction in future
Adaptation needed for aquaculture, esp. scallops, oysters, pearls
and shrimps, all of which are very important to the local industries
(for tourism as well as fisheries)
- Such as to raise larvae with lower-CO2 conditions
Many uncertainties in future projection to be reduced, esp.
for those caused by:
- Climate model structure
- Future scenario of greenhouse gas emissions
: Biological adaptation to changing environments
- Other human impacts (population growth, overfishing etc.)

Session 2-2

"Mitigation Options CCS and the Marine Environment"

Jun Kita

Supervisory Researcher,
Marine Ecology Research Institute

Academic Background
B.S. Fisheries Science, National University of Fisheries, Yamaguchi, Japan, 1986
M.S. Marine Biology, Kyushu University, Fukuoka, Japan, 1988

Ph.D. Marine Biology, Kyushu University, Fukuoka, Japan, 1991

Area of Expertise
A. Marine environmental impact assessment
B. Physiology of marine organisms
C. Chemical and physical coastal marine monitoring
D. Carbon dioxide capture and storage under the seabed
E. Ocean acidification

