Impact assessment and a fiscal recovery policy for tsunami risk: GIS and the general equilibrium approach in Hakodate City, Japan

Hajime Tanaka & Michael C. Huang, Ph.D.

Secondation Reace Foundation

Outlines

Motivation

Research area

Methodology

> Damage estimate: GIS, Census data, Hazard map

Recursive CGE model

<u>Simulation results</u>

- Identify the sectoral vulnerabilities
- > Estimate the costs required for recovery and social welfare analysis
- <u>Concluding remarks</u>

Motivations

- Ocean related natural disasters, such as Tsunami should be tackled with cautions, the effective plan for resilience investment is desirable.
- Evidence-based and visualized approach for recovery would assist policy makers to allocate resources or call for financing options.

Research area: South of Hokkaido - Hakodate City

- Major city in Southern Hokkaido.
- Famous for Kelp, Squid and Tourism.
- The most attractive city in Japan (2018).

Flood damage of Tsunami in Hakodate-city

- Hakodate City is highly exposed to Tsunamis (eg. 1960, 1968, 2011).
- 12 million USD losses in 2011 by Tsunami.
- The large-scale earthquake or tsunami can happen within 30 years with relatively high probability nearside Hakodate City.
- Effective disaster risk reduction policy desirable.

Analytical flow

1. Input-output Table

2. GIS Analysis

3.CGE modeling

- 36 sectors
- Social accounting matrix •
- Economic structure

- 13,795 offices (97 sectors)
- Tsunami Hazard Map
- Damage estimate

- Aggregate into 16 sectors
- Impact assessment
- <u>Recovery process</u>

Summary of data in use

No.	. Name of Data Source		Spatial Scale	Year
1	Tsunami Hazard Map	Hokkaido Bosai Information	10m	2012
2	Land Usage Map	Geospatial Information Authority	100m	2012
3	Office Data	Economic Census	Street, District	2016
4	Building Types	Hakodate City	City	2016
5	Damage Definition	Hakodate City	Japan	2012
6	Input-Output Table	Asakawa et al. 2006	City	2005

Process to estimate capital and labor losses

① The number of offices and employees by street or district (Census)

- (2) Tsunami hazard map: The average height of flooding area
- ③ The land usage map: Identify the geographical location of offices.
- (4) The rate of building area covered by Tsunami (2+3): To estimate the ratio of office area covered by Tsunami.
- (5) The ratio of buildings(wooden or non-wooden) in Hakodate city: <u>To categorize damages by type of buildings</u>
- **(6)** Tsunami damage classifications:

To categorize damages by height and types of buildings

The information of the number of offices and employees by street or district.

• Each point (211) has the number of offices and labor of 97 industries in each district in 2016.

(2) Tsunami hazard map

- An assumed Mw 9.1 earthquake occurred in southeast of Hokkaido Pacific rim (approx. 350 km from Hakodate City).
- 189,660 samples (10m²)
- Min: 0.01m
- Max:15.75m
- Ave: 3.1m

③ The land usage map

 Building area defined by satellite image can be assumed to contain all offices.

(4) Building area covered by Tsunami (merge of (2) and (3))

- Calculate the average coverage rate of Tsunami in buildings area in each district.
- By multiplying with ①, the estimate number of offices damaged by Tsunami can be estimated.

(5) The ratio of buildings in Hakodate city (wooden or non-wooden)

- Damage to buildings differs by the type of buildings.
- The ratio applies to all Hakodate city as estimation rate.

The ratio of buildings in Hakodate city (2014)

	Number of existing buildings	Percentage				
Wooden	98,925	79.2%				
Non- Wooden	25,960	20.8%				
Authors calculated from the summary of tax revenue in Hakodate city(2014)						

(6) Tsunami damage classifications

Damage classifications

Damage	Flooded Height(H)				
Category	Wooden Buildings	Non-Wooden Buildings			
Fully collapse	2.0m≦H	n.a.			
Half collapse	1.0m≦H<2.0m	n.a.			
High flooding	0.5m≦H<1.0m	0.5m <u><</u> H			
Low flooding	0.0m <h<0.5m< td=""><td>0.0m<h<0.5m< td=""></h<0.5m<></td></h<0.5m<>	0.0m <h<0.5m< td=""></h<0.5m<>			

Source: Hakodate City (2012)

Damage classifications*

Damage	Flooded Height(H)				
Category	Wooden Buildings	Non-Wooden Buildings			
100%	2.0m≦H	4.0m≦H			
50%	1.0m≦H<2.0m	2.0m≦H<4.0m			
25%	0.5m≦H<1.0m	0.5m≦H<2.0m			
0%	0.0m <h<0.5m< td=""><td>0.0m<h<0.5m< td=""></h<0.5m<></td></h<0.5m<>	0.0m <h<0.5m< td=""></h<0.5m<>			

*Estimated by authors

Data for policy simulations

Abbreviation	Sector
AGR	Agriculture, Forest and mining
SWD*	Kelp
NEF*	Fixed Net-fishery
SQI*	Squid
FIS*	Other fishery
PRO*	Food processing
TEX	Texitle
PET	Petroleum & chemical
MAE	Metal & machinery
MDU	Education & medical service
CON	Construction
ELY	Electricity
COM	Commerce & financing
TRS	Transportation & communication
SRV	Public service
REC*	Recreation (Restaurant & hotel
Labor	Labor endowment

- <u>The 2005 input-output table</u> of Hakodate City (specific categories for fishery and recreation sectors)
- Estimated the loss of offices & employees in 97 industries by the tsunami by the max height assumption in each district

*Ocean-related sectors

The sectoral impact of the tsunami under the flooded area

	Wooden building				Non-wooden building					
Sector	0-0.5 m	0.5-1 m	1-2 m	> 2 m	0.5-2 m	2-4 m	4-6 m	> 6 m	Total stock	Total impact
	(-0%)	(-25%)	(-50%)	(-100%)	(-0%)	(-25%)	(-50%)	(-100%)		
AGR	0.1	0	0	1.7	0	0	0.2	0.3	27	-7.6%
SWD	0	0	0	1.9	0	0	0	0.5	3	-81.3%
NEF	0	0	0	1.9	0	0	0	0.5	3	-81.3%
SQI	0	0	0.5	9.1	0	0.3	0	2.5	17	-70.7%
FIS	0	0	0.5	9.1	0	0.3	0	2.5	17	-70.7%
PRO	0.1	0.4	0.1	103	0	0.3	2.4	26.3	220	-59.4%
TEX	0	0.4	0.8	79.2	0	0.7	5.2	16.9	202	-49.2%
PET	0	0	0	5	0	0	0.7	0.7	15	-40.2%
MAE	0	0.4	0.6	82.4	0	0.5	4.1	18.8	175	-59.3%
MDU	1	3.2	9.1	362.4	0.3	7.2	19.6	81.4	1,538	-30.0%
CON	0.4	2.8	6.3	260.5	0.1	5.2	10.3	62.3	1,224	-27.2%
ELY	0	0	0	5.4	0	0	0.2	1.3	17	-40.1%
СОМ	2.4	14.5	23.6	1,491.8	0.7	21.9	72.5	343.3	4,844	-39.1%
TRS	0.1	0.4	0.4	115.1	0	0.4	2.8	29.3	375	-39.0%
SRV	0.8	1.5	8.2	476.6	0.2	5.6	24.3	108.6	1,522	-39.6%
REC	1.8	9	16	938.1	0.5	14.4	30.7	230.8	3,616	-33.1%
Labor	69	280	535	37,070	19	227	1410	8,924	124,215	-37.9%

Source: Calculated by the authors.

Assumed sectoral damage by tsunami

*Due to data limitation, the damage on NEF and FIS are assumed equivalent with SWD and SQI respectively

Source: Revised by authors based on Huang & Hosoe (2016, 2017)

Scenarios for policy simulations

- 10-year recovery policy for ocean-related sectors:
 - SWD (Kelp), <u>NEF</u> (Fixed Net-fishery),
 - SQI (Squid), FIS (other fishery),
 - PRO (food processing [agriculture & fishery]),
 - <u>REC</u> (recreation [restaurant & hotel])
- Recursive modelling assumptions:
 - Capital factor: immobile [could only be increased by investment]
 - Labor factor: mobile, could recover 75% every year, fully recover in 5-th year.

Recovery policy:

- Capital-use subsidy: To add back the damaged capital stock
- Target year: To resume the output level as pre-disaster in the <u>11th year</u>.
- Gross domestic output transformation function: $Z_i = \theta_i (\xi e_i E_i^{\phi_i} + \xi d_i D_i^{\phi_i})^{1/\phi_i} \quad \forall i$

where Z_i = sectoral output; ξ = share parameter; E_i = export good; D_i = domestic good, e_i = exchange rate; ϕ_i = trans. elasticity parameter

• The welfare function is determined by:

 $ep(p^{q}, UU) = \min_{XP} \{p^{q} \cdot | UU(X^{p}) = UU\}$ $EV = ep(p^{q}, UU^{1}) - ep(p^{q}, UU^{0})$

where $ep(\cdot)$: expenditure function; X^p : consumption vector, p^q : price vector; UU: utility level (given); $UU(\cdot)$: utility function

Model scope: Inter-temporal Model Structure

$$p_{i,t}^{q} II_{i,t} = \frac{p_{CAP,i,t+1}^{f} F_{CAP,i,t+1}}{\sum_{j} p_{CAP,j,t+1}^{f} F_{CAP,j,t+1}} \left(S_{t}^{p} + \varepsilon_{t} S_{t}^{f}\right)$$

 $P_{i,t}^{q}$ price of Armington composite goods $H_{i,t}$ sectoral investment in the *i*-th sector $p_{CAP,i,t+1}^{f}$ price and the amount of capital service in the *i*-th sector in the next period

- S_{t}^{p} private savings, which are generated with a constant saving propensity
- S_t^f foreign savings in the foreign currency converted with an exchange rate \mathcal{E}_t are spent in purchasing investment goods
- *n* population growth rate
- ζ elasticity parameter that determines sensitivity of sectoral investment allocation to a gap of sectoral rate of returns

The capital-use subsidy rate for a 10-year recovery policy

	SWD	SQI	NEF	FIS	PRO	REC
Subsidy rates	31%	30%	34%	42%	47%	34%
Recovery to BAU	No	No	No	No	Almost	Yes

The recovery paths (output change)

The recovery paths (output price change)

Fiscal cost and social cost/benefit (unit: mil. JPY)

Concluding remarks & Policy Implications

- The <u>CGE model</u>, together with <u>hazard map</u> and <u>industry census</u> could visualize and quantify the disaster impact with DRR recommendations.
- The aquaculture sectors: Fishery (FIS), Squid (SQI) Kelp (SWD) and Fixed-net Fishery (NEF) are extremely vulnerable and could not recover within the Hakodate's capacity, require special measures/mechanism to reduce disaster risk.
- Food processing sector (PRO) requires huge support to recover, but could generate notable social benefits (with increase of (SQI)), such sector should be promoted.

Policy implications

- More scenarios of <u>DRR measures</u> (eg. <u>Dyke construction, building</u> <u>reinforcement</u>) should be made available, awareness and DRR could be quantified.
- *Investing in resilience could ensure prosperous economy:* The simulation results could also provide city with development potential.

Limitation and future perspectives

- The assumption of building category and factor endowment could be oversimplified (which is already the best level we could grant)
- The research could be expanded for larger scale, such as county (prefecture), or the vulnerability and resilience index could be defined

