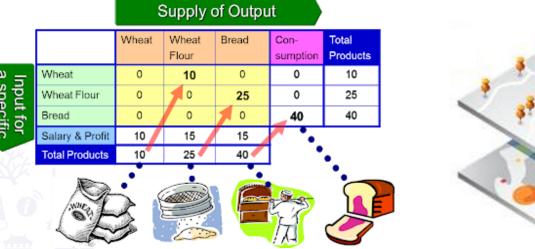


Tsunami Disaster Impact and Vulnerability Index Assessment: An Approach of GIS and CGE model for Mie Prefecture, Japan

- 9th IIASA-DPRI Conference on Integrated Disaster Risk Management -

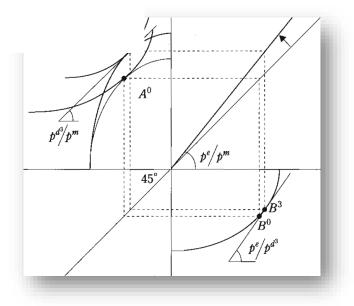
Hajime Tanaka, Nagisa Yoshioka, Michael C. Huang Blue Finance Project, Ocean Policy Research Department

THE OCEAN POLICY RESEARCH INSTITUTE


Introduction

- Research aims
- Methodology(Input-Output Table, GIS, CGE)
- Economic structure of Mie prefecture (Capital dependency ratio)
- Tsunami damage to office (Lost capital ratio)
- Simulation results (<u>Tsunami Impact</u>, <u>Capital Vulnerability Index</u>)
- Discussion and Policy recommendations, Research limitation etc.

Research aims


- To interpret the prefectural economic structure and interdependence to understand the disaster impact on regional industries with <u>scientific methodologies</u>
- Provide <u>holistic and plausible policy recommendations</u> for disaster risk reduction and for economic resilience
- Provide <u>Capital vulnerability index</u> for sectors to better understand the vulnerability

Methodology

1. Input-output Analysis

42 sectors

- 42 sectors
- Social accounting matrix
- Economic structure

- 710,059 offices (155 sectors)
- Tsunami Hazard Map

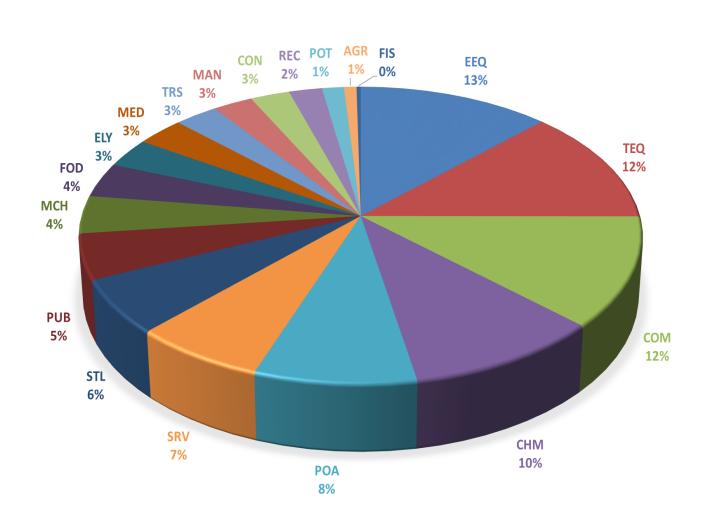
2. GIS Analysis

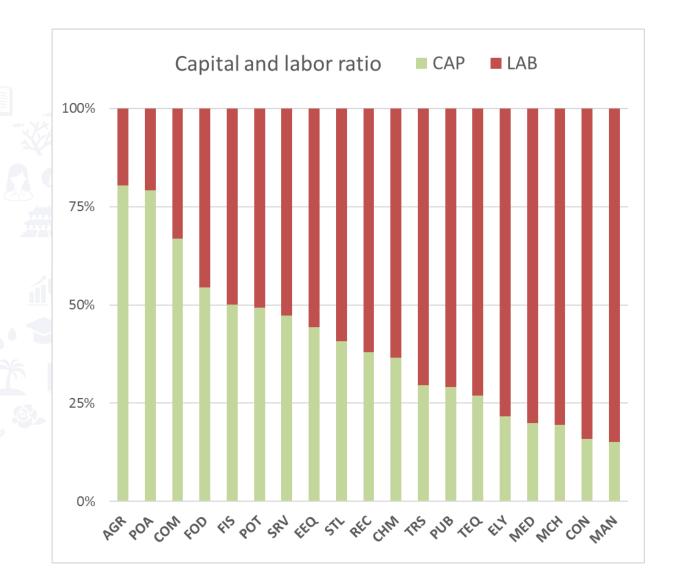
Damage estimate

3.CGE modeling

- Aggregate into 19 sectors
- Impact assessment
- Vulnerability Index

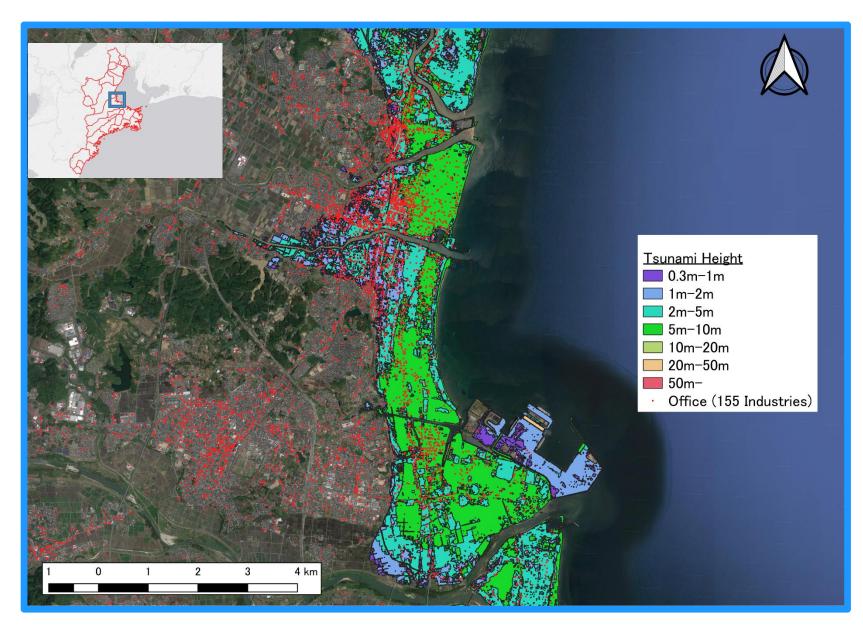
*2020 data


Research case: Mie Prefecture

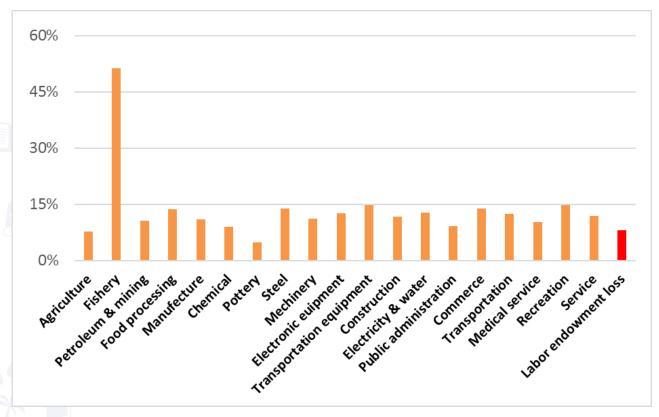


Mie Prefecture Economic Structure (IO table)

Industry	abbr	%
Electronic equipment	EEQ	13%
Transportation equipment	TEQ	12%
Commerce	СОМ	12%
Chemical	СНМ	10%
Petroleum & mining	POA	8%
Service	SRV	7%
Steel	STL	6%
Public administration	PUB	5%
Machinery	MCH	4%
Food processing	FOD	4%
Electricity & water	ELY	3%
Medical service	MED	3%
Transportation	TRS	3%
Manufacture	MAN	3%
Construction	CON	3%
Recreation	REC	2%
Pottery	POT	1%
Agriculture	AGR	1%
Fishery	FIS	0%



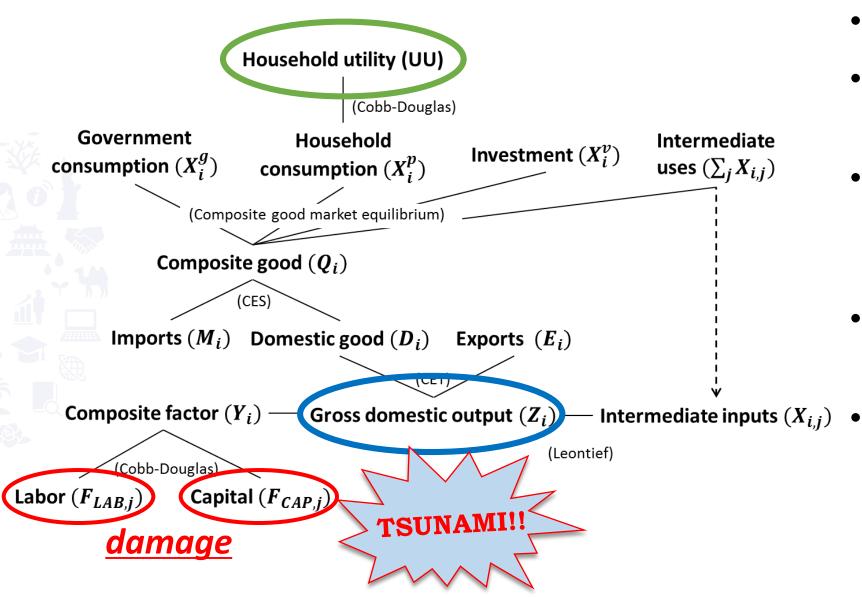
Capital and Labor dependency ratio (IO table)


- Labor and Capital Factor endowment (left).
- Capital dependency ratio is high in <u>AGR</u>, <u>POA</u>, <u>COM</u>, <u>FOD</u> and <u>FIS</u> sectors.
- Higher labor ratio in <u>REC</u>, <u>MED</u>, <u>CON</u>, <u>MAN</u>, <u>TEQ</u>, indicating the importance of human capital.

2. Geographical Information of Tsunami and Office

- Combines office
 location and
 Tsunami hazard
 map.
- Hazard map assumes the Nankai Trough Earthquake.
- Tsu city (left) will be covered by Tsunami (0.3-10m)

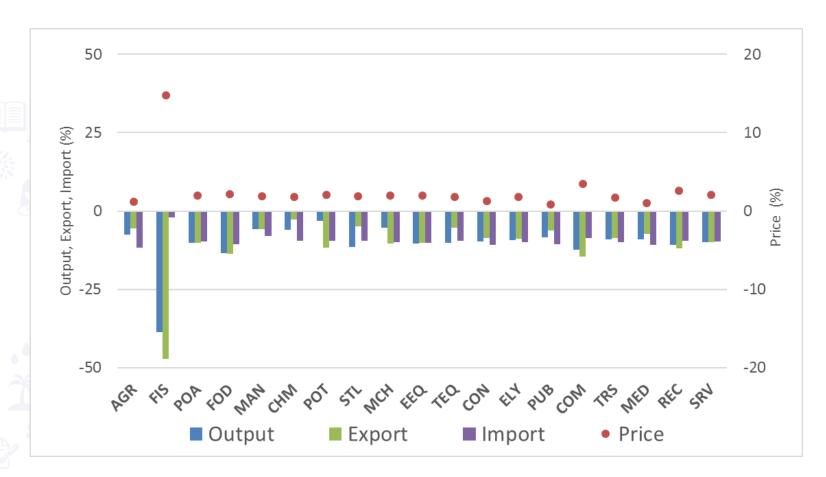
Tsunami damage estimate


	Flooded height(m)		
Damage Category	Wooden buildings Non-wooden Buildings		
0%	0.0m <h<0.3m< td=""><td>0.0m<h<2.0m< td=""></h<2.0m<></td></h<0.3m<>	0.0m <h<2.0m< td=""></h<2.0m<>	
25%	0.3m≦H<1.0m	2.0m≦H<5.0m	
50%	1.0m≦H<2.0m	5.0m≦H<10.0m	
100%	2.0m≦H	10.0m≦H	

Elooded height(m)

Note: Based on Shuto (1992). The building ratio was assumed from the city tax record.

- Lost capital ratio in each industries (left) was calculated based on our damage criteria (right).
- Most devastated sectors: Fishery(51.4%), Recreation (14.7%), Transportation (14.7%), Steel (13.9%), Commerce (13.9%), Food processing(13.8%),


CGE model structure

Source: Amended by authors based Huang and Hosoe (2016), (2010); Tanaka and Huang (2020)

- Static & single region
- Accommodate with the Mie IO table
- Armington elasticities sourced from GTAP database
- <u>Capital</u> factor is sectoral specific, <u>Labor</u> is mobile
- Disaster shock affects production factors, generating new level of output, prices and utility (welfare)

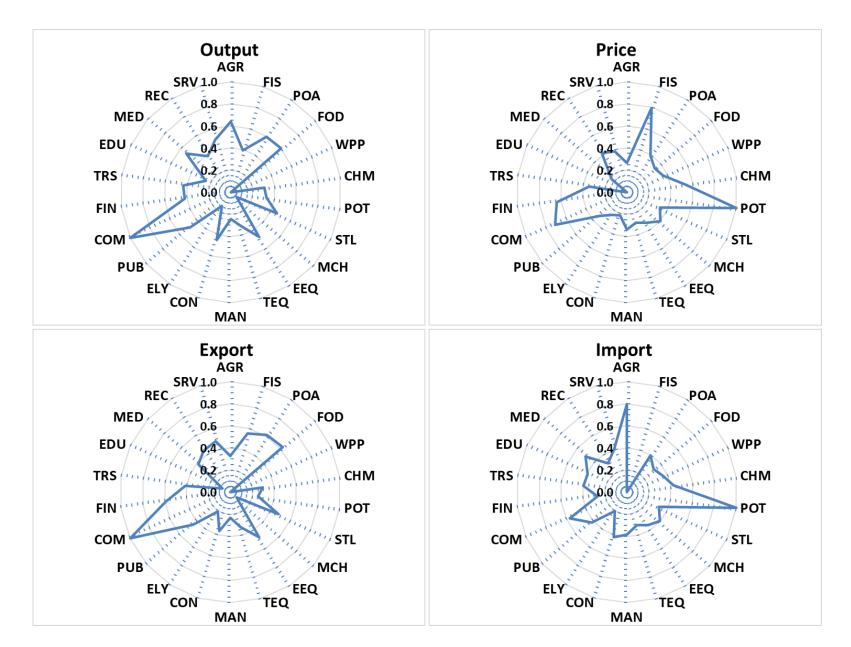
Simulation results

Note: Welfare decrease by 494,126.3 million JPY

- Output, external trade decrease in all sectors, severe impact on <u>FIS</u>
- Price is rather steady except for <u>FIS</u>, indicating its scarcity and nonsubstituted
- Drastic price changes resulted in welfare decrease, implying 664,882 JPY losses for each household

Vulnerability Index (IV)

 $Vulnerability Index (VI) = \frac{Disaster impact}{Capital damage}$


where disaster impact: change of output, price, and external trade

 $\widetilde{VI}_i = \frac{VI_i - VI_i^{Min}}{VI_i^{Max} - VI_i^{Min}}$

where *i*: sectoral impact, $VI_i^{Max} - VI_i^{Min}$ is the interval of the index; the interval could be reversed if VI_i is negative

- This index reveals the overlooked vulnerable industries against tsunami
- Help identify the sensitivity of impact caused by the tsunami damage
- Higher index could refer to the drastic change and the vulnerability

Capital vulnerability index of tsunami

13

Discussion and policy recommendations

- Fishery (FIS) sector require <u>resilience investment</u> for ex-ante disaster risk reduction
- The regional "<u>vassal and harbor support mechanism</u>" should be developed to increase the capacity toward disaster
- In terms of capital vulnerability index of output, additionally we see <u>Commerce (COM)</u>, <u>Food (FOD)</u>, <u>Petroleum (POA</u>), and <u>Agriculture (AGR)</u> are also vulnerable against Tsunami, which could have been overlooked.
- The Index could help making <u>ex-ante</u> disaster preparedness and countermeasures for DRR.

Research limitations

- The assumption of damage category of Tsunami is based on Shuto (1992), but it needs more sophisticated.
- Input-Output Table (42 industries) is too rough to include 155 industries (GIS).
- The interference between other regions in Japan are not in considerations, inter-regional analysis may be necessary.

- Dynamic analysis for recovery path and fund requirement estimate
- Compound disasters (eg. Pandemic, energy crisis, etc.)
- Data (IO table, GIS) compilation and filed work for higher accuracy
- Further studies focuses on vulnerable sectors

Thank you for your attention!

Blue Finance Project

THE OCEAN POLICY RESEARCH INSTITUTE

